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ABSTRACT 

Antimicrobial resistance (AMR), also known as antibiotic resistance, is a global 

health crisis. Many people die from diseases caused by multi-drug resistant (MDR) 

pathogens. Artificial intelligence (AI) involves creating computer systems that can 

perform tasks typically requiring human intelligence, such as visual perception, 

speech recognition, decision-making, and language translation. AI has been 

successfully used in various fields, from single-cell study to space science. There is 

huge potential for using AI in medical science, including fighting against MDR to 

combat AMR. In this review, we have highlighted some of AI’s successful uses and 

potentiality to combat AMR for the betterment of the human race, including the 

basic principles of AI, available AI resources, use and scope, advantages and 

limitations. In addition, in this review, we also have highlighted new research areas 

such as AMR detection, new drug development etc. to control of AMR. 

  

 

 

 

 

 

 

 

 INTRODUCTION 

Antimicrobial resistance (AMR) is when microorganisms become resistant to 

antimicrobial agents, making them ineffective at inhibiting or killing the 

microorganisms. Antimicrobials are used to fight against microbes. Bacteria, viruses, 

fungi, and parasites have developed this resistance over time by modifying their body 

physiology, genetic structures, and other cellular components and activities because of 

the selection pressure induced by antimicrobials. After penicillin was introduced to the 

market in 1941, the first signs of resistance appeared in staphylococci, streptococci, and 

gonococci. By 1942, Staphylococcus aureus, which was penicillin-resistant, emerged [1]. 

The World Health Organization (WHO) identifies AMR as one of the top 10 global 

health threats, making it one of the most concerning phenomena of the 21st century [2]. 

Up to 10 million deaths could occur each year by 2050. AMR, if unchecked, could lower 

GDP by US$3.4 trillion yearly and increase the number of people living in extreme 

poverty by 24 million during the following ten years [3]. A conservative estimate by the 

Centers for Disease Control and Prevention (CDC) suggests that over two million 

Americans contract antibiotic-resistant infections annually, with at least 23,000 resulting 

in death. According to the CDC, AMR costs the United States $55 billion annually, of 

which $20 billion is spent on direct healthcare costs and $35 billion on societal costs 

associated with lost productivity [4]. AMR also has a negative impact on achieving 

Sustainable Developmental Goals (SDG). 
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Any change in genetic material e.g., DNA or RNA sequence of an organism is known as 

mutation. Mutation is directly linked with the development of AMR. Mutation due to 

selection pressure or as a consequence of natural phenomenon e.g., spontaneous plays 

major role in the development of AMR. These mutations ultimately may cause changes 

in amino acid sequence of protein such as receptor proteins, and enzymes that are 

potential target of many antibiotics. Once altered antibiotics are not able to interact with 

receptor protein, binding protein, target enzymes resulting resistance development.  

Selective pressure can also drive the development of AMR by promoting the survival 

and proliferation of organisms with novel mutations or newly developed characteristics 

[5]. Factors including overuse and inappropriate use (inappropriate choices, inadequate 

dosing, and poor adherence to treatment guidelines) contribute to developing antibiotic 

resistance [6]. Dever et al. [7] claim that there are primarily three primary mechanisms 

by which AMR developed: alterations in membrane permeability to antibiotics, 

transformation of bacterial proteins that are antimicrobial targets, and enzymatic 

degradation of antibacterial agents. It can be kept on the bacterial chromosome or by 

plasmid maintenance [7]. Statistics show that AMR and its effects are gradually 

growing, and in contrast, the world has produced very few antibiotics. The last new 

class of antibiotics to be discovered and commercialized was fluoroquinolones, the 

previous group of broad-spectrum antibiotics in 1987. It is, therefore, high time to put 

all our efforts into using an integrated approach to develop new antimicrobials, 

methods, techniques, and strategies to work against AMR.  

Artificial intelligence (AI), a branch of computer science that deals with creating 

intelligent systems capable of learning from data and making informed decisions, is 

increasingly being applied to various aspects of AMR management [8]. Machine 

learning algorithms, a subset of AI, can analyze vast datasets of microbial genetic 

information, clinical records, and drug interactions to identify patterns and predict the 

emergence of antibiotic-resistant strains. These algorithms can help healthcare 

professionals make more informed decisions about antibiotic use, ensuring that 

treatments are both effective and tailored to the specific microorganisms involved. AI-

powered diagnostics are revolutionizing the identification of infectious agents and their 

susceptibility to antibiotics. Rapid and accurate diagnosis is crucial for effective 

treatment and reducing the unnecessary use of antibiotics. AI-driven diagnostic tools 

can quickly analyze biological samples and provide insights into the most suitable 

treatment options [9]. In addition to diagnostics, AI is playing a pivotal role in drug 

discovery. Traditional drug discovery processes are time-consuming and costly, but AI 

algorithms can sift through vast chemical libraries and predict potential antimicrobial 

compounds with higher efficiency. This accelerates the development of new antibiotics 

and alternative treatments, which is essential given the stagnant pace of antibiotic 

discovery in recent decades [10, 11]. Moreover, AI-powered surveillance systems 

continuously monitor antimicrobial usage, resistance patterns, and disease outbreaks 

[12]. By analyzing this real-time data, AI can help identify regions or facilities with 

elevated AMR risks, enabling targeted interventions to prevent its spread. 

As we confront the escalating threat of AMR, the integration of AI technologies into our 

strategies for research, diagnosis, and treatment represents a promising avenue. With 

AI's capacity to process and analyze data at unprecedented speeds, it offers hope in the 

battle against AMR and the pursuit of innovative solutions to protect public health and 

achieve (SDGs). Collaborative efforts that harness the power of AI alongside traditional 

approaches will be crucial in addressing this 21st-century global health challenge. The 

aim of this review is therefore to update our current knowledge on the basic principles 

of AI along with areas having potential to apply AI for combating AMR. 
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AMR IN HUMAN HEALTH 

In this running era, AMR mainly affects human life in several ways, as humans are the 

ultimate consumers of animal products and have a close relationship with the 

environment. The most pressing risks to public health pose substantial obstacles to the 

effective prevention and treatment of chronic diseases and raise the expense of 

healthcare [13]. AMR is thought to cost the European Union more than nine billion 

euros annually [14]. Moreover, antibiotic resistance increases healthcare costs by $20 

billion annually and causes an estimated $35 billion in lost productivity according to 

the CDC, in the United States [15].  

According to the statistical model developed by Murray et al., [16] bacterial AMR will 

be directly responsible for 12.7 million of the estimated 495 million deaths in 2019. 

Regionally, the all-age mortality rate caused by resistance was highest in western sub-

Saharan Africa, at 27.3, and lowest in Australasia, at 65. Around 1.5 million deaths in 

2019 were caused by resistance from lower respiratory infections. The six most common 

pathogens for mortality associated with resistance caused 929000 deaths related to 

AMR and 3.57 million deaths linked with AMR in 2019 (Escherichia coli, followed by 

Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter 

baumannii, and Pseudomonas aeruginosa [16].  

A report from 2021 showed that , 35.0% of hospitalized patients in Europe received 

antibiotics [17]. This number is around 258.0 million in the USA in 2010 with 

macrolides and penicillin as the most prescribed antibiotics. A report in 2017 from India 

showed that more than 70% of isolates of Klebsiella pneumoniae, E. coli, and Acinetobacter 

baumannii as resistant to fluoroquinolones and third-generation cephalosporins [18]. 

Many of these pathogens are zoonotic in nature. Anthropogenic Actions are believed to 

be involved in the emerging and re-emerging many zoonotic diseases including spread 

of AMR [19]. 

AMR in humans can be caused by several factors, including poor diagnostic tools, self-

medication, and unneeded, insufficient, and inefficient doses. South Europe was shown 

to have a greater rate of self-medication with antibiotics (19%) compared to Northern 

Europe (3%) and Central Europe (1%). In African nations, all antibiotic use is done 

without a prescription, compared [20]. Not only does direct human consumption of 

antibiotics for treatment purposes cause antibiotic resistance but also some indirect 

factors are responsible for the development of AMR in humans. The use of antibiotics 

in livestock production is increasing. It has already surpassed the total mass consumed 

by humans [18]. Because humans consume more animal products than other species, 

transmission occurs through this pathway. Several models have been proposed to 

describe the transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial 

resistance genes (ARGs) between humans and animals. These transmission pathways 

can occur bidirectionally, with clonal transfer of ARB and horizontal transmission of 

ARGs being two of the primary conceptual models [21].  

 

AMR IN ANIMALS 

Animal production is expanding to supply the demand for protein as the global 

population grows every day. Antimicrobials are frequently used for four different 

purposes: 1. Therapeutic, mainly for treating a single animal or a group of animals; 2. 

Metaphylactic, both for prophylaxis and therapy; 3. prophylactic, for preventing 

disease; and 4. Subtherapeutic, for promoting growth, improving feed efficiency, and 

treating disease [22]. Two-thirds of global annual antibiotic production, or 65,000 tons 
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out of 100,000, are utilized for animal husbandry, as per The State of the World's 

Antibiotics 2015 report [23].  

It is estimated that 80% of the antimicrobials consumed annually in the United States 

are used on animals raised for food [24]. It causes AMR in animals and enters humans 

via the food chain. Research indicates 228 countries where antibiotics are used in 

livestock, with a conservative estimate of the total consumption in 2010 being 63,151 

tons. By 2030, antimicrobial usage in Brazil, Russia, India, China, and South Africa is 

projected to increase by 67% [25]. 

There are several resistant bacteria that have been isolated against different antibiotics 

in recent time. This indicates the alarming situation of the AMR era in the animals. All 

Campylobacter isolates from animals, including cattle, chickens, turkeys, pigs, sheep, 

dogs, cats, and horses, have shown resistance to one or more antimicrobial substance(s), 

including quinolones, macrolides, lincosamides, chloramphenicol, aminoglycosides, 

tetracycline, β-lactams, cotrimoxazole, and tylosin [26, 27]. 

Salmonella spp. also exhibits the same resistance to tetracyclines, sulfonamides, 

streptomycin, kanamycin, chloramphenicol, β-lactams, amoxicillin/clavulanic acid, 

nalidixic acid, and ceftriaxone in isolates obtained from humans, chicken, turkey, pig, 

cats, dogs, and horses [28].  

 

AMR IN ENVIRONMENT 

The environment is one of the critical components of One Health. Human and animal 

populations are always interconnected. Due to rapid and unauthorized as well as 

without proper maintenance of the withdrawal period of antibiotics in humans and 

animals, the residue of antibiotics and the antibiotic resistance gene are frequently 

found in the environment, e.g., soil, air, and water. According to a United Nation 

Environmental Program (UNEP) assessment, human exposure to AMR bacteria in the 

environment can happen through contact with contaminated food, drinking water, 

fungal spores, and other channels [29]. The 2015 Action Plan for AMR developed by the 

WHO has increasingly emphasized the environment over the past decade. 

Both humans and animals can mainly get AMR through food-producing environments, 

which plays a vital role in spreading AMR. AMR bacteria from various environmental 

sources, such as crop production and horticulture, can contaminate environments 

where food is produced. The sources of pollution include waste products like slurry, 

manure, and air that are produced by animals used for food production on land and in 

water. Additionally, waste products and leftovers from post-harvest food processing 

plants (such as slaughterhouses and food processing facilities), urban and hospital 

wastewater treatment plants, and effluents (resulting from the direct use of 

antimicrobials) all contribute to environmental pollution [30].  

The biologically active form of a significant portion of the antibiotics people eat is 

eliminated in the urine and faeces. The antibiotics that are often less water soluble, such 

as norfloxacin, ofloxacin, ciprofloxacin, trimethoprim, sulfamethoxazole, and 

doxycycline, are those that are more usually discovered in sludge [31]. Compounds 

ultimately have one of three outcomes when they enter a wastewater treatment facility: 

biodegradation, absorption into sewage sludge, or unmodified discharge into the 

effluent. Finally, unaltered antibiotics are responsible for antibiotic resistance [32]. 

Genes responsible for AMR have been found in different environmental samples in 

several research worldwide. In the inlet to the treatment plant, there were three types of 
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water: domestic water, domestic waste with hospital effluent, and hospital effluent. 

After analysis, the sample showed that the resistance of E. coli to third-generation 

cephalosporin was 25%, 70%, and 95% [33].  

Many AMR genes have also been detected in microplastics found in the aquatic 

environment and have been shown to provide new platforms for biofilm development, 

which causes different health problems for humans and animals [34]. Besides this, it 

helps the potential effect of ARGs. ARGs spread easily when manure is distributed 

widely, by feedlots or land spreading. Antibiotics were found downwind of feedlots, 

comparable to levels downstream of sewage outlets (0.5-4.6 g/g) [35]. In groundwater, 

sulfamethazine and chlortetracycline inhibit nitrate growth and denitrification, 

increasing nitrate pollution risk [36]. 

ARGs has been found everywhere in the environment, including water, air, and soil, as 

the lives on the earth greatly depend on the environment and its resources. Hence, 

taking proper steps to combat the spreading of ARGs through the atmosphere is 

necessary.  

 

ARTIFICIAL INTELLIGENCE  

AI is an alternate way to do specific tasks that work by combining a set of established 

data and algorithms and doing trained software simultaneously to learn automatically 

from patterns. There are several definitions of AI: The Turing test is possibly the most 

widely used definition of AI.; Allan Turing devised an experiment in 1950 called an 

"imitation game." AI can be described as the ability of a computer to pass the Turing 

test, a game involving three participants: a human judge, an individual, and an 

automated system. The participants are separated and can only communicate through 

text. If the human judge is unable to distinguish between the machine and person, the 

Turing test is considered a success [37]. 

"AI" also refers to the science and engineering of creating intelligent machines, and 

"intelligence" refers to the computational component of the capacity to do tasks in the 

real world [38]. Another definition of AI is A study area in computer science. AI strives 

to build tools with human-like learning, reasoning, and self-correction capabilities [39].  

When defining AI, several components should include inclusiveness, precision, 

comprehensiveness, practicability, and permanence [40]. Due to the quick advances, 

definitions have also evolved throughout time. The phrase "imitating intelligent human 

conduct," used in more recent reports, is already significantly stronger. Although there 

are various definitions, most fall into one of the following four categories [39]: 1. 

systems with human-like thinking, 2. systems that behave like people, 3. systems 

capable of logical thought, 4. systems that function logically. The fields of AI are 

Machine learning, Deep learning, and neural networks with different types: Reactive AI, 

Limited memory machines, Theory of mind, and Self-aware AI. 

AI aims to develop software that can provide an explanation based on output and 

reason based on input. AI will enable human-like interactions with software and 

provide decision support for specific tasks, but it has yet to be and will be a 

replacement for people. 
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AI AND HEALTH SECTOR 

AI is crucial in enhancing the health industry by collecting patient data, early diagnosis 

and prevention of illness, using X-ray, Computerized Tomography (CT), and Magnetic 

Resonance Imaging (MRI), reducing cost reduction, and improving medication 

prescribing. For instance, advances in AI are among the most developed tools in this 

field and have demonstrated great accuracy in imaging and signal identification tasks 

[41]. AI-based technology will improve life by making it simpler, safer, and more 

productive. AI has the potential to enhance patient care and reduce healthcare expenses 

significantly [42]. In many sectors, the manual health system has already been digitally 

turned into an automated one by AI. In other applications, individuals are no longer 

required to manage more fundamental medical practice responsibilities like managing 

patients and medical supplies [43]. They are predicting the medical need, automatic 

radiation analysis, ophthalmology, robotic surgery, reducing AMR, biofilm detection 

including beta-lactamase inhibitors, AMR marking, new drug discovery, and safe 

caring of the patient. 

There are some advantages and limitations to AI applications. The usages of AI in 

different health sectors are briefly presented in Figure 1. Benefits typically assist with 

early automated decision-making, early diagnosis, excellent systematic work, data 

exchange, time savings, and performance enhancement. Challenges are areas for 

improvement in decisions that can be provided s, such as lack of skilled personnel in 

the health sector to operate AI., patient safety, leaking of patient data, medicine 

prescribing error, and human interference. 

 

Figure 1. The usage of AI in various health sectors to speed up proper and accurate diagnosis and treatment 

procedures.  

 

AI AND DISEASE DIAGNOSIS 

Identification of the causal agent is required for accurate disease diagnosis, which is 

crucial for planning, efficient treatment, and ensuring the well-being of patients. Due to 

the lack of proper diagnosis facilities for infectious or non-infectious diseases and if the 
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condition is infectious, then identifying the causal agent, either by bacteria or viruses, 

or other organisms, the practitioners prescribe broad-spectrum antibiotics every year, 

thus creating AMR. The Centers for Disease Control and Prevention (CDC) estimates 

that around 1.7 million diseases connected to healthcare are treated annually in 

hospitals in the United States of America. Infections contracted in hospitals are the 

primary cause of death from infectious diseases and are among the top 10 reasons 

worldwide. These infections are responsible for around 99,000 deaths each year [44]. 

Broad-spectrum antibiotics are occasionally administered as a form of treatment 

without a definitive diagnosis and an indication for antibiotic therapy. Occasionally, a 

patient's demand for immediate recovery from their illness leads to the serial 

administration of antibiotics [6, 45]. 

The disease diagnosis process has become more accessible, quicker, and more accurate 

due to the advancement of science. For disease diagnosis, AI methods ranging from 

machine learning to deep learning are becoming increasingly common in the healthcare 

industry (Table 1). This assists medical professionals in more precisely selecting the 

appropriate treatments to prescribe. Skin disorders have been found by analyzing 

primary tumor data from the Institute of Oncology with Multi-Layer Perceptron (MLP) 

and Artificial Neural Networks [46]. The Urology disease-related heterogeneous 

dataset used machine learning to identify the urological disease, and 71.8% of the 

participants concluded that AI is more effective than human intelligence in diagnosing 

urology disease detection [47]. Gastrointestinal disease Data was collected from 

humans through IoT Visual Geometry Group (VGG) 16, Artificial Neural Networks 

(ANN), and Deep Learning Accuracy with an accuracy of 98.4% [48]. Throughout the 

COVID-19 pandemic, a variety of AI-based diagnostic tools have been utilized [49] to 

analyze a CT scan dataset by AI and found that 90.9% sensitivity and 87.5% specificity; 

on the other hand, Chest X-ray dataset by using deep learning models got the accuracy 

98.8% [50] and Deep learning and the Health Technology Assessment were used to 

analyses the RT-PCR laboratory dataset [51]. Deep Learning and Residual Neural 

Network (ResNet) were used to analyze a sample of one hundred computed 

tomography (CT) images of tuberculosis [52], which got 85.29% accuracy. Not only that, 

in recent years, different chronic diseases, different types of cancer, cardiovascular 

diseases, thyroid disease, and Alzheimer’s disease have been successfully diagnosed 

using AI.  

Deep learning strategies based on AI have been effectively merged with microfluidics 

to detect bacteria and viruses. Additionally, deep learning has successfully identified 

antibacterial molecules with bactericidal activity against various pathogens. Because 

human-operated microscopy is a time-consuming and laborious process with poor 

precision, researchers can discover and monitor infections for clinical diagnosis and 

pathogenesis studies using microscopic imaging. This enables the researchers to better 

understand the disease process [53]. 
 

Table 1. Current accessible image collection, utilized in deep learning experiments to identify 

various microorganisms, aids in precise disease diagnosis. 

Organisms Description of the dataset Ref. 

Virus Based on Transmission Electron Microscopy images of 15 virus types with 15 texture classes and 

100 unique texture patches per class 

[54] 

Bacteria 3D microscopy images of gut bacteria of 21000 manually labelled 3D regions of interest. 

The image is reshaped into 8x28x28 by the convent function before input into the neural network. 

It was originally 10x30x30 px (4.5 x 4.5 x 8 um). 

[55]  

Parasites 34,298 microscopic pictures of various parasites and host cells [56]  

Fungus Digital images of fungus species contain 180 images of five yeast-like fungal strains. [57]  
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DISCOVERY AND IDENTIFICATION OF BETA-LACTAMASE INHIBITORS 

USING AI  

For the past 60 years, beta-lactams (including penicillin, cephalosporins, carbapenems, 

and monobactams) have been the most popular and efficient antibiotics, making up 

65 %of all antibiotic usage globally. Additionally, they are among the best treatments 

for infectious disorders [58]. 

Antibiotic-resistant bacteria have developed various defenses against therapeutic 

agents. Antibiotic resistance mechanisms include enzymatic degradation or 

modification of antibiotics, alteration of the antibiotic's target site, and prevention of 

access to the target site by altering permeability or efflux. Furthermore, bacteria have 

enhanced their ability to target antibiotics [59]. 

One of the main resistance mechanisms is the production of beta-lactamase, a bacterial 

enzyme that confers multi-resistance to beta-lactam antibiotics like penicillin, 

cephalosporins, cephamycin, monobactams, and carbapenems. By forming a covalent 

bond with and inactivating enzymes, -lactam antibiotics prevent the formation and 

modification of the bacterial peptidoglycan.  

There are two structural types of β-lactamases named serine β-lactamases and metallo-

β-lactamases (MBL). The serine β-lactamases hydrolyse later-generation cephalosporins, 

and carbapenemases such as Klebsiella pneumoniae carbapenemases (KPC) that 

hydrolyse carbapenem antibiotics, in addition to later-generation cephalosporins. 

Metallo-β-lactamases (MBL) are Zn (II) dependent enzymes that can accommodate 

most β-lactams in their active site and will hydrolyse almost all β-lactam antibiotics, 

including carbapenems [60]. 

Reports are available suggesting that in many cases the t available inhibitors do not 

inhibit many β-lactamases at the moment [61]. In recent years, AI has been used to 

develop new β-lactamase inhibitors (Figure 2) to combat AMR and the organism. This 

process uses a Multichannel deep neural network (DeepBLI), Machine learning 

algorithms, DeepBL Deep Learning-Assisted Photochromic Sensor, and ML-random 

forest model (Table 2).  

 

Figure 2. Effect of AI-discovered beta-β-lactamase inhibitors combined with antibiotics on β-lactamase-

containing bacteria.  
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Table 2. Recent AI technologies are used to develop and identify beta-β-lactamase inhibitors.  

AI Technology Description Key outcomes Ref. 

Ligand Competitive Saturation 

(SILCS) and Machine-learning 

based random- 

Forest (RF) 

Screening 700,000 chemicals for the 

functional group having antimicrobial 

activity.  

Identified CMY-10 inhibitors 

having potentiality to work against 

MD.  

[62] 

Multichannel deep neural 

network (DeepBLI) 

To identify potential metallo—β-

lactamaseAIM-1 inhibitors and adapt 

rottlerin to four different classes of β-

lactamase targets, demonstrating its 

potential as a broad-spectrum inhibitor 

Produces results with Area Under 

the Receiver Operating 

Characteristics (AUROC) of 0.9240 

and AUPRC of 0.9715, indicating 

the ability to discover novel β-

lactamase-inhibitor interactions. 

[63] 

Machine learning algorithms A large dataset with more than 62,000 

compounds and their β-lactamase 

potency values AmpC was used in 

QSAR (quantitative structure-activity 

relationship) mode after being obtained 

from ChEMBL. 

Microorganisms containing beta-

lactamases were tested for 

bioactivity against plant-based 

flavonoids and terpenoids. 

[64] 

DeepBL 

 

The whole proteome was screened 

using the UniProt database reviewed 

bacterial protein sequences. 

 The discovery of β-lactamase in 

silico 

 

[65] 

Deep Learning-Assisted 

Photochromic Sensor 

 

For use with convolutional neural 

networks (CNNs), a dataset of 2520 

unduplicated fluorescence intensity 

images were collected. 

The technique permitted quick 

measurement with a concentration 

range of 1 to 100 mg/L and 

distinguished six -Lactams with a 

prediction accuracy of 97.98% 

[66] 

Bayes decision rule combined 

with robust statistics and a 

Siamese neural network 

Detection of targeted Optical 

Distribution Network (ODN)  

Detected T-ODN having NDM-1 

enzyme like activity responsible 

for β -lactam antibiotics resistance. 

[67] 

Combined Support-Vector-

Machine-Based Virtual 

Screening and Docking 

Method 

For the virtual screening of IMP-1 

metallo-β-lactamase inhibitors, a 

support vector machine (SVM) and the 

docking method separate compounds 

into positives and negatives. For in 

vitro tests, eight of the twenty-five 

chosen compounds were bought. 

Four compounds have demonstrated 

inhibitory potency against IMP-1 

Metallo-β-lactamase inhibitors. 

[68] 

Plasmonic nanosensors and 

Machine Learning 

 

Detect nanoparticle surface plasmon 

resonance (SPR) spectra 

Rapid detection of (E. faecium, S. 

aureus, K. pneumoniae, A. baumannii, 

P. aeruginosa, and Enterobacter spp.) 

ESKAPE pathogens.  

[69] 

ML-random forest model Using ML to look for and find potential 

candidates with the properties of β-

lactamase inhibition 

A search for structurally related 

compounds was conducted after 

one molecule that showed much 

promise, and the results revealed 

that all 28 of the other returning 

compounds had antibacterial 

activity. 

[62] 

Algorithm-based Artificial 

Neural Network 

A feature vector is created by deriving 

several metrics from the basic structure. 

Experimentally determined beta-β-

lactamase data are gathered and 

converted into feature vectors. 

Using jackknife testing, cross-

validation, and independent 

testing, the predictor's overall 

accuracy is 99.76%, 96.07%, 94.20%, 

and 91.65%, respectively.  

[70] 

 

AI TO IDENTIFY AMR MARKERS 

AMR markers are specific traits or genetic components linked to antibiotic resistance of 

bacteria or other microorganisms. These markers are used in diagnostic tests to identify 

and detect the presence of AMR in pathogens. The value of AMR markers is found in 

their ability to direct appropriate treatment choices. Determining the resistance markers 

present in the pathogen when a patient is infected with a bacterium resistant to a 

particular antimicrobial drug is critical. This knowledge aids medical professionals in 

selecting the most appropriate antibiotics to treat the infection. The likelihood of a 
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successful outcome can be increased while reducing the chance of further fostering 

AMR by choosing the best antibiotics. 

The genes in charge can be found in various ways, and researchers are still developing 

new technology. The most popular techniques for identification are based primarily on 

cultivating these microorganisms under particular circumstances. Though 

straightforward and simple to implement, some aspects could be more beneficial. Some 

research projects are hampered by the existence of viable, non-cultivable 

microorganisms or by the lengthy time it takes for some organisms to multiply in the 

environment [71].  

In recent years, AI-based machine learning and deep learning methods (Figure 3) have 

demonstrated substantial performance in AMR control, such as sequencing-based AI 

applications, gathering clinical data to develop clinical decision support systems [72]. 

Different AI algorithms are widely used  for AMR detection, including naïve Bayes 

(NB), support vector machines (SVM), decision trees (DT), random forests (RF), and 

artificial neural networks (ANN) [73]. The technique has also been successfully used to 

detect functions and abnormalities of heart, kidney, liver, thyroid, lung, gastrointestinal 

etc. [68].  

     

Figure 3. Different AI-based technologies used to diagnose disease in the body’s various systems as described 

previously [74].  

 

It is necessary to detect AMR markers to fight AMR and provide accurate treatment to 

the patient. Recent studies have shown that deep learning, a class of machine learning 

algorithms, can also expand the catalogue of AMR genes and increase the accuracy of 

the predictions based on metagenomic data. Recent studies have shown that the deep 

learning methodology, known as DeepARG, is more accurate than more conventional 

methods when identifying antibiotic resistance genes based on metagenomic data [75]. 
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Various AI-based machine learning and deep learning methods successfully identify 

the resistance genes from different bacteria. Machine Learning, Homology Modeling, 

and Molecular Docking were used to detect the specific gene and effect of particular 

antibiotics on many bacterial with  90% accuracy [76]. Models such as deep 

convolutional neural network (DCNN) and support vector machine (SVM) has been 

used to detect specific gene identification of tuberculosis with a accuracy of about 93% 

accuracy [77]. The DNP-AAP (deep neural pursuit - average activation potential) 

method was used recently to analyse the Neisseria gonorrhoeae dataset with paired 

whole-genome sequence data and resistance profiles to five commonly used antibiotics.  

 

AI TO COMBAT BIOFILM FORMATION 

Biofilm is a pivotal cause of AMR. It is a colony of heterogeneous, complex matrix 

structures where bacteria and organisms play some part role. It differs from their 

planktonic structure and is highly resistant to antimicrobial properties compared with 

planktonic characteristics [78]. This matrix is formed by exopolysaccharides, 

extracellular DNA(eDNA), proteins, and lipids where bacteria and other organisms 

attach deeply to adhesive materials [79, 80]. For this tangled form of the matrix, deeply 

residing organisms can easily survive in harsh conditions and perform antimicrobial 

inhibitory action combined with several factors, which are the number of organisms, 

quorum sensing (QS), mutation, longevity of cells, upregulation of drug efflux pumps, 

and Antibiotic tolerance. So, it is difficult to treat the infection for organisms associated 

with biofilm. Therefore, it's essential to identify the mechanism and structure of biofilm 

to mitigate AMR. However, in mechanism, organisms come close and Attach to the 

surface, secrete matrix and adhesive materials, then mature the matrix and disperse 

into the environment. To prevent biofilm development, it is also essential to understand 

the structure of biofilm. Understanding biofilm can be achieved in qualitative and 

quantitative ways. If biofilm detection can be done, it will help to reduce AMR. 

Identification of biofilm formation followed by biofilm inhibitory ways is very 

important. Detection of biofilm and inhibitory molecules usually requires more time 

and is arduous. So, it’s essential to identify as early as possible. There are many types of 

methods to combat biofilm such are Inhibition of macromolecule synthesis and 

adhesion of cells, Anti-biofilm peptides, Bacteriophage (phage) therapy, Antimicrobial 

Photodynamic Therapy, alteration of membrane permeabilization, inhibition of cell 

division or cell survival, antibiotic-modifying enzymes in the matrix, Nutritional 

limitation and stress response, Electrochemical Control of Biofilm Formation, pH-

Responsive Polymer–Drug Conjugate system and nanotechnology. In recent research, 

combined with previous studies, machine learning and some other AI models have 

brought outstanding achievements in detecting biofilm inhibitory molecules, which is 

also a less time-consuming task (Table 3). 

aBiofilm is a further tool for chemical molecule anti-biofilm prediction that offers a 

qualitative prediction of molecule inhibitory action. The aBiofilm tool makes use of a 

quantitative structure-activity relationships (QSAR) model that is based on Support 

Vector Machine (SVM), and it assigns low (negative) and high (positive) labels to tiny 

molecules by their relative inhibitory potentials of 20 and 60 %, respectively [81]. One of 

its flaws is that it needs to consider scenarios where model-building inhibition is 

between 20 and 60%, which might lead to errors in prediction and reduce its 

effectiveness [82]. 
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Table 3. Different methods of formation and detection of biofilm.  

Methods Name Description Target Ref. 

 

 

 

Qualitative 

and indirect 

Biofilm Ring Test Measuring the lack of microbead spots magnetic field and the 

mobility of the beads when combined with a bacterial solution in a 

polystyrene microplate indicate the presence of a biofilm. 

The characterization of biofilm-

forming bacteria 

[83] 

Steam-based method To maintain biofilm integrity and increase the repeatability of 

biofilm measurement, steam is employed as a mild cleaning 

technique.  

It enables the measurement of the live 

bacteria in the biofilm and the 

differentiation between strains that 

form biofilm and strains that don't 

develop biofilm.  

[84] 

Tube method (TM) The detection of visible biofilm Observation of biofilm lining the 

bottom and the walls of the tube for 

the qualitative detection 

[85] 

Congo red agar (CRA) Colonies inoculated on CRA media change colour. Qualitative detection by observing 

colony colour change  

[86] 

Roll plate method Microorganisms colonize the external surface and visualize 

indirectly 

Detection of colonization 

 

[87] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantitative 

and   artificial 

techniques 

AI-driven image 

analysis 

The colour shift of injected colonies on CRA medium Segmenting the bacterial cells and 

extracting the microscale geometric 

characteristics of the biofilm 

[88] 

A Multi-disciplinary 

Procedure 

Multiple existing data sets from related studies were combined to 

analyze meta-data about biofilm development. 

Understanding the formulation 

process can help to create successful 

biofilm control techniques.  

[89] 

Scanning electron 

microscopy images 

Separating biofilm from scanning electron microscopy pictures using 

machine learning methods. 

To detect the formation of biofilm and 

destruction of biofilm 

[90] 

Deep Learning 

Approach 

Convolutional neural networks (CNNs) were utilized to accurately 

identify recent photographs using a small number of EFM images 

depicting biofilms of varying bacterial compositions. CNN 

performance was compared to that of human experts. 

To detect Biofilms of different 

bacterial compositions 

[91] 

Epifluorescence 

microscopy (EFM) on 

mineral sulfides 

Combination with bacterial species-specific nucleic acid dyes Enables the detection of particular 

groups of microorganisms adhering to 

metal sulfide surfaces and allows for 

the investigation of biofilm structure 

and spatial distribution of cells. 

[92] 

Open-source robotic 

platform (EvoBot) 

By carrying out completely automated biofilm cultivations with the 

possibility of using optical coherence tomography to see the biofilms 

(OCT)   

To detect reliable parameters 

describing biofilm structure. 

[93] 

Confocal microscopy 

images 

Confocal laser scanning microscopy (CLSM) selectively stimulates 

fluorescence signals from different planes inside a sample and takes 

point-by-point photographs using localized laser excitation at 

specific wavelengths. 

To detect the presence of extracellular 

DNA, exopolysaccharides, and 

biofilm viability 

[93] 

BiofilmQ The technical details are presented in the online documentation 

based on conventional image analysis methods, novel object 

tracking, and image cytometry algorithms. 

Numerous internal and external 

biofilm features may be quantified, 

analyzed, and visualized in three 

dimensions in time and space. 

[94] 

Time-lapse imaging 

method 

Bright-field stereomicroscope with episcopic illumination and a 

microcontroller system that synchronizes a robotic arm with the 

movement of a stereomicroscope-mounted camera and lighting 

conditions are used in an Arduino-based method for time-lapse 

imaging of the whole biofilm ontogeny.  

To detect biofilm development of 

different morphological and 

developmental dynamics 

[95] 

Microtiter plate (MP)  Biofilm detection with a microplate reader  Quantitative detection of biofilm [85] 

 Real-time PCR Pathogens can be identified by amplifying species-specific nucleic 

acid sequences, and virulence factors can be detected by amplifying 

target virulence genes, such as biofilm genes, using gene-specific 

primers. 

Detection of biofilm genes [85] 

Conventional PCR 

Multiplex PCR 
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AI AND ANTIBIOTIC SUSCEPTIBILITY TEST 

Antibiotics are a life-saving medicine for chronic infectious diseases where Infections 

caused by bacteria are prevented and treated using it. Despite the beneficial effects of 

an antibiotic in treating infectious diseases, it can also cause some life-threatening 

impacts on human and animal life due to overuse or misuse by AMR.  

There are several convenient ways to conduct an antibiotic sensitivity test (AST), but 

it’s usually time-consuming and takes about 16-24 hours. There are usually two types of 

AST: the phenotypic and genotypic tests. In phenotypic AST, Disk Diffusion Gradient 

Diffusion, Beta-β-lactamase Activity, Broth dilution, Agar dilution, Epsilometer testing 

(EST), Matrix-Assisted Laser Desorption lionization-Time of flight mass spectrometry 

(MALDI-TOF MS), Flow cytometry are done. PCR, DNA microarrays, DNA chips, and 

loop-mediated isothermal amplification (LAMP) are frequently employed in genotypic 

procedures. However, new AI technology has been developed recently to perform AST 

rapidly. Support Vector Machines, Genetic Methods, Artificial Neural Networks, and 

Quick Classifiers are popular AI techniques. AST usually uses these algorithms for 

machine learning. 

In another study, Antibiotic effectiveness in treating different bacteria kinds was 

predicted using an ANN model, which was then confirmed. The study considered 

susceptibility as the output, with organism name, specimen type, and antibiotic name 

as inputs. To achieve this, a model with a single input layer, one hidden layer, and one 

output layer topology was developed and trained using data from the Queensland 

government's website. The study shows that the proposed ANN model utilizing the 

JNN tool has a 94.17% accuracy rate in predicting an organism's susceptibility to 

antibiotics [96]. In this study results varied from 60% to 100 % [97]. For rapid result of 

AST report, here MALDI-TOF-based medical AI (XBugHunter) was used successfully 

with an accuracy above 95%.  Therefore, the application of  XBugHunter might be able 

to lower the over-prescription of antibiotics in patients with S. aureus bacteremia [98].  

 

CONCLUSION AND RECOMMENDATION 

Early and accurate detection of AMR of pathogens is crucial to prescribe effective drugs 

for therapeutic purposes. In this review, we tried to focus on how AI is used nowadays, 

along with other techniques in AMR detection. We found that integrating AI in AMR 

detection has proven to be a transformative step in combating this global health threat. 

AI technologies have led to significant advancements in the rapid and accurate 

identification of AMR pathogens, enabling healthcare professionals to make informed 

decisions regarding patient treatment and containment measures. Consequently, the 

use of AI in AMR detection has contributed to reducing AMR risk, safeguarding public 

health, and promoting responsible antibiotic usage. One of the critical strengths of AI in 

AMR detection lies in its ability to analyze vast amounts of data from diverse sources, 

including genomic sequences, patient records, and real-time epidemiological data. This 

capability has facilitated the early identification of emerging AMR strains, allowing for 

prompt and targeted interventions to prevent their spread. Moreover, AI-powered 

diagnostic tools have enhanced the accuracy of antimicrobial susceptibility testing, 

streamlined treatment selection, and minimized the misuse of antibiotics.  

Despite AI's benefits in detecting AMR, it still has significant drawbacks. First, accuracy 

is lower because there is a lack of data, and it is challenging for existing AI algorithms 

to forecast high-dimensional traits. Therefore, an area for future research is the 

automatic annotation of unlabeled data using unsupervised learning. Second, the 
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generalizability of AI-based systems is insufficient because they can only handle 

datasets with the same distribution. Transfer learning and few-shot learning will, 

therefore, be used more and more in the future to counteract AMR. Finally, applying AI 

technology quickly is challenging due to the severe lack of infrastructure, the high 

installation cost, data authenticity, data normalization, and the shortage of skilled labor.  

To strengthen AI's involvement in AMR detection and handling related issues in the 

healthcare industry, we recommend the following areas to be explored in future 

research in this field: 

Enhance predictive models: Develop a more sophisticated model that includes multiple 

parameters, such as genomic information, patient history, and environmental factors, to 

predict AMR more accurately and effectively. 

Data sharing and standardization: Encourage international collaboration and data sharing 

among healthcare institutions and researchers to standardize data formats and 

interoperability protocols that will ultimately improve the accuracy and robustness of 

AI models, enabling better generalization across different populations and settings. 

Ethical and regulatory frameworks: Develop and implement clear ethical guidelines and 

regulatory frameworks for using AI in AMR detection. This includes ensuring data 

privacy and security, mitigating algorithm bias, and promoting transparency in AI 

decision-making processes. 

Building capacity: Invest in effectively training healthcare professionals and researchers 

to use AI tools for AMR detection. Building capacity at all healthcare system levels will 

enable a seamless integration of AI technologies into routine clinical practice. 

Real-time surveillance: Strengthen real-time surveillance systems that integrate AI 

algorithms to monitor the emergence and spread of AMR. Early detection of resistant 

strains is crucial for implementing timely containment measures and preventing 

outbreaks. 

One health approach: Adopt a holistic One Health approach that considers human, 

animal, and environmental factors in AMR surveillance. AI may help analyze data from 

multiple sources to better comprehend the intricate interactions between these aspects. 

Investment in research and development: The authorities should take this matter seriously 

because AMR is a national and worldwide concern, so research connected to AMR and 

AI should be expanded with sufficient government and drug industry funding. 

AMR is a global health problem having negative impact on humans, animals, and the 

ecosystem. We can strengthen our group efforts to reduce AMR by embracing these 

suggestions and developing AI integration in AMR detection. To maintain the 

effectiveness of current antimicrobial agents and protect the health of future 

generations, it will be essential to combine the power of AI with efficient public health 

initiatives and responsible antibiotic stewardship. By working together, we can defeat 

AMR and pave the road for a better and healthier future. 
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