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ABSTRACT 

SARS-CoV-2, a new and fast circulating coronavirus strain, infected over 214 

countries and territories worldwide and caused global health emergencies. The 

absence of appropriate medicines and vaccinations has further complicated the 

condition. SARS-CoV-2 main protease (Mpro) is crucial for its propagation, and it is 

considered a striking target. This study used several computational approaches to 

determine the probable antagonist of SARS-CoV-2 Mpro from bioactive 

phytochemicals of Syzygium aromaticum. A total of 20 compounds were screened 

through in silico approach. The molecular dynamics simulation studies were then 

carried out for further insights. We found crategolic acid, oleanolic acid, and 

kaempferol have considerable binding affinity and important molecular contacts 

with catalytic pocket residues, His41-Cys145. The pharmacological properties 

through ADMET analysis also showed that these compounds could be used as safe 

drug candidates. The molecular dynamics simulation study further confirmed these 

compound’s stability with Mpro. However, further detailed in-vitro and in-vivo 

analyses are compulsory to evaluate the real potentiality of identified compounds. 

 

  

 

 

 

 

 

 

 

 
INTRODUCTION 

A novel coronavirus strain was stated in late 2019 in Wuhan, China, called SARS-CoV-2, 

linked to lethal respiratory sickness in the patients [1]. The SARS-CoV-2 infection is 

termed as coronavirus disease 2019, which has created severe health issues and 

separated countries from one another. This disease triggered a global medical 

emergency and severely affecting international travel, tourism, and trade [2]. SARS-

CoV-2 lies in the beta Coronavirus family [3], which has a similar sequence identity 

with its descendants SARS-CoV [4, 5]. 

The beta-coronaviruses synthesize ~800 kDa polyproteins, which are enzymatically 

sliced to synthesize several proteins. The papain-like protease (PLpro) and main protease 

(Mpro) causes the proteolysis of coronavirus proteins [6]. The Mpro slices the polyprotein 

and generates various polypeptides vital for viral replication, transcription, and 

translation [4, 7, 8]. The dynamic behavior of Mpro exemplifies its possibility to become a 

striking target for drug design. Moreover, SARS-CoV-2 Mpro is not similar to human 

homologous proteases [9]. The ligand-binding site of Mpro is placed into the groove of 

domains I and II comprising the crucial catalytic dyad His 41 and Cys 145  [10, 11]. 
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Moreover, some recent studies demonstrated that Mpro could be the prominent target of 

SARS-CoV-2 infection [11-14].  

Still today, there is no specific anti-SARS-CoV-2 drugs are available. However, several 

clinical trials are underway; and most of them are focused on relieving the symptoms 

[15]. Besides, the antiviral efficiency of several already existing drugs has been testified 

in several studies [16, 17]. However, repurposed drugs have proven effective, but their 

efficacy and safety are still ambiguous [18-20].  Besides, the recent coronavirus strain 

(B.1.351) found in South Africa possesses more infection rate, and it shows the ability to 

re-infect people. Recently, South Africa [21] and several European countries, including 

Austria, Estonia, Iceland, Italy, Lithuania, Luxembourg, Latvia, and Norway, has 

postponed the use of the AstraZeneca vaccine following reports of blood clots [22]. 

Nevertheless, the benefits outweigh the rare blood clot events, and the European 

Medical Agency, World Health Organization, and the International Society on 

Thrombosis and Hemostasis recommended taking the vaccine. However, it raises the 

urgency to find more specific drugs to inhibit SARS-CoV-2 infection with broader 

efficacy to overcome public concern.  

Plant-derived compounds could be a great source of antiviral drug compounds as they 

possess low toxicity, have a more convenient biosynthesis process, and can be screened 

easily through computational biology techniques. Besides, most drug candidates used 

from the last four decades were derived from natural sources [23-25]. Also, plant 

synthesized compounds have shown antiviral activity against several viruses' 

including's Chikungunya [26], SARS [27], and SARS-CoV-2 [28]. 

This study was conducted to find out the potent natural anti-SARS-CoV-2 compounds 

from Syzygium aromaticum (clove). Syzygium aromaticum is commonly used as a spice, 

which contains many bioactive compounds and is cultivated worldwide [29, 30]. S. 

aromaticum has also been used as a traditional medicine for a long time [30]. Besides, S. 

aromaticum compounds have been shown to act against many viruses such as Hepatitis 

C virus, Herpes simplex virus [30], Feline calicivirus [31], and Adenovirus [32]. The 

potential antiviral activity of S. aromaticum against several RNA viruses raises the 

possibility to act against SARS-CoV-2. Thus, this study was projected to find out 

probable compounds against SARS-CoV-2 targeting Mpro. 

 

METHODS AND MATERIALS 

Isolation and preparation of ligands 

In this study, initially, we built a compound dataset of S. aromaticum through related 

literature search on Scopus, Google Scholar, PubMed, and Web of science literature 

repository [33]. We curated 20 compounds of S. aromaticum from these databases and 

downloaded their three-dimensional structure from the Pubchem database [34]. The 

PyRx ligand preparation wizard was used to prepare compounds as ligands (Version 

Python prescription 0.8) [35] through Merck molecular force field (mmff94) [36], and 

the ligands were then converted into PDBQT format for further analysis.  

 

Preparation of receptor  

The Mpro 3D structure (PDB ID: 6LU7) [37] was extracted from the largest crystal 

structure repository, Protein Data Bank (https://www.rcsb.org/) [38]. Before molecular 

docking, the receptor was prepared using Chimera [39] and AutoDock tools integrated 

into PyRx [35].  
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ADMET analysis 

The physicochemical properties of isolated ligands were evaluated by ADMET analysis. 

ADMET profiling analysis is a promising and cost-reductive approach that tells us 

about any compound's physicochemical properties, drug-likeness properties, 

potentiality, and effectiveness [40]. In silico studies have accelerated the velocity of 

drug design and are now widely used in pharmaceuticals, leading to finding novel 

compounds to combat various microorganisms [41]. Lipinski's rule of five is essential 

for determining a drug's probability with a particular pharmacological and biological 

activity [42]. Three or more violations do not follow the drug-likeness requirements and 

are not considered a drug for further study. ADMET properties were analyzed using 

the Schrodinger QikProp (QikProp, Schrödinger, LLC, New York, NY, USA) program 

[43]. The drug-likeness properties of the selected compounds were studied using 

Lipinski's "rule of five" [44]. 

 

Compound's screening  

The virtual screening was conducted using AutoDock wizard integrated [35, 45]  PyRx 

software (Version Python prescription 0.8)  [35]. The ligands were kept as flexible, and 

the receptor was inflexible. The docking grid box (x = -13.09, y = 15.00, z = 69.32) was 

generated using Auto Grid engine in PyRx. The conformational root-mean-square 

deviation (RMSD) result of less than 1.0 Å was taken as perfect and bunched for later 

promising binding analysis. The highest negative score was considered as better 

binding. Here, α-ketoamide was considered as a control ligand [10]. The BIOVIA 

Visualizer (Discovery Studio v 4.5) was employed to observe molecular interactions 

[46].  

 

Molecular dynamics simulation  

The molecular dynamics simulation was conducted using the "WebGRO for 

Macromolecular Simulations (https://simlab.uams.edu/)" server utilizing the 

"GROMACS" macromolecular simulation system [47]. Initially, the ligand topology files 

were prepared by the "PRODRG" server [48]. In this study, the GROMOS96 43a1 force 

field was utilized, along with the SPC water model and NaCl (0.15 M) solvated cubic 

box. The energy was minimized using the steepest descent algorithm (5000 steps). For 

temperature control, NVT/NPT temperature (300 K) system was used in 1 bar pressure. 

Finally, we conducted a 50 ns simulation. The trajectory was used to calculate RMSD, 

Rg (Radius of gyration), RMSF (Root mean square fluctuation), SASA (Solvent 

accessible surface area), and Hydrogen bond analysis. 

 

RESULTS 

ADMET analysis 

The QikProp ADME/Tox analysis protocol deciphered that all compounds follow "rule 

of 5" except bicornin (shown in Table 1). According to drug-likeness property analysis, 

the selected compounds' molecular weights were between the recommended range 

(≤500 g/mol) except for bicornin. The hydrogen bond acceptor and donor were also 

below the recommended range (≤10 and ≤5, respectively). The filtered 19 compounds 

were then employed for further investigation. 
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Table 1. ADMET properties of all compounds. 

Compounds Molecular 

weight 

Number of hydrogen 

bond donors 

Number of hydrogen bond 

acceptors 

Octanol/water partition 

coefficient (QPlogPo/w) 

QPlogHERG QPPMDCK 

Campesterol  402.702 1 1.7 7.005 -4.113 1880.296 

Carvacrol  156.267 1 1.7 2.459 -2.281 2123.9 

Crategolic acid  476.738 4 6.8 3.913 -3.435 194.373 

Ellagic acid  318.323 6 13.6 -2.397 -0.896 7.154 

Eugenin  216.277 2 6.8 0.186 -1.516 979.328 

Eugenitin  230.303 2 6.8 0.54 -1.369 1235.933 

Eugenol  172.267 1 3.4 1.338 -0.822 2082.283 

Ferulic acid  204.266 3 6.8 -0.347 -1.427 201.381 

Gallic acid  178.185 5 8.5 -1.903 -1.781 24.819 

Kaempferol  302.367 5 10.2 -1.017 -0.99 38.682 

Myricetin  334.366 7 13.6 -2.326 -1.542 5.655 

Oleanolic acid  460.739 3 5.1 4.979 -3.669 529.115 

Quercetin  318.366 6 11.9 -1.604 -0.908 16.301 

Rhamnetin  332.393 5 11.9 -1.074 -2.853 54.578 

Salicylic acid  146.186 3 5.1 -0.563 0.49 287.837 

Stigmasterol  416.729 1 1.7 7.331 -4.075 1880.391 

Vanillin  160.213 2 5.1 -0.081 -0.451 553.933 

Bicornin  1088.763 5 25 -3.521 -6.386 0.038 

Biflorin  364.392 7 15.3 -2.169 -3.051 18.469 

Caffeic acid  190.239 4 6.8 -0.989 -1.8 57.264 

 

Compound's library screening and interaction visualization  

The binding affinity of all selected ligands is shown in Table 2. The top graded anti-Mpro 

hits were selected based on their interaction with the catalytic dyad His41 and Cys145 

and higher binding affinity. We found three compounds, i.e., oleanolic acid, crategolic 

acid, and kaempferol having higher binding affinity -7.7 kcal/mol, -7.6 kcal/mol, and -

7.6 kcal/mol, respectively. Besides, they have shown crucial molecular interactions; 

thereby chosen for further analysis.  

 

Table 2. Binding affinity of Syzygium aromaticum compounds with Mpro 

Ligand  Binding affinity (kcal/mol) 

α-ketoamide (+ control) -7.3 

Oleanolic acid -7.7 

Crategolic acid -7.6 

Kaempferol -7.6 

Biflorin -7.3 

Ellagic acid -7.3 

Rhamnetin -7.3 

Myricetin -7.3 

Quercetin -7.2 

Stigmasterol -7.1 

Campesterol -6.9 

Eugenin -6.0 

Eugenitin -6.0 

Ferulic acid -5.7 

Caffeic acid -5.6 

Gallic acid -5.4 

Vanillin -4.9 

Salicylic acid -4.9 

Carvacrol -4.8 

Eugenol -4.7 

 

The molecular interaction analysis showed that all the selected compounds either 

interact with Cys145 and His41 or, at least with one of them. α-ketoamide is a positive 

control in this study that forms four H bonds with Gln189 residue and several alkyl 
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bonds with Cys145, Met49, Met165, Leu27 & His41 residues (Figure 1a). Crategolic acid 

comprises H bond with Thr25, Leu141, and Gly143 residues and pi-alkyl bonds with 

Cys145, His41, Met165, and Met49 residues (Figure 1b). Oleanolic acid comprises H-

bond with Ser144 and pi-alkyl bonds with Cys145 and Met49 residues (Figure 1c). The 

last compound, kaempferol, comprises H-bond with His163, pi-alkyl bonds with 

Cys145 and Met165, and pi-stacked bond with His41 residue (Figure 1d).    

 

 

Figure 1. Molecular interactions of selected compounds with SARS-Cov-2 Mpro (a) Positive control α-

ketoamide, (b) Crategolic acid, (c) Oleanolic acid, and (d) Kaempferol.  
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Molecular dynamics simulation  

Molecular dynamics simulation was used to project the behaviour of projected 

compounds in the biological system.  In this study, both control complex and newly 

selected compounds' behaviors were studied through RMSD, Rg, RMSF, SASA and H 

bond studies. In Figure 2a, it is seen that the selected compounds have lower RMSD 

values than the positive control α-ketoamide. Crategolic acid showed relatively lower 

RMSD values than other compounds. The average RMSD values of α-ketoamide, 

crategolic acid, oleanolic acid, and kaemferol were 2.07 Å, 1.51 Å, 1.55 Å, and 1.57 Å, 

respectively. Interestingly, crategolic acid, oleanolic acid, and kaempferol showed a 

more stable condition in simulation compared to the control. The radius of gyration 

demonstrates the compactness of the system over time. The average Rg values of 

crategolic acid, oleanolic acid, and kaempferol were 2.17 Å, 2.12 Å, and 2.13 Å, 

respectively (Figure 2b). Oleanolic acid and kaempferol have lower Rg values 

compared to the control 2.15 Å. The fluctuation pattern of each amino acid residue was 

calculated using RMSF (Figure 2c). Figure 2c showed notable fluctuations in the 

terminal regions for each complex, but fewer fluctuations were seen in the active site 

region. The average RMSF values of α-ketoamide, crategolic acid, oleanolic acid, and 

kaemferol were 1.25 nm2, 0.97 nm2, 0.97 nm2, and 1.04 nm2, respectively. The solvent-

accessible surface area was also evaluated for each complex. The higher SASA value 

demonstrates the openness of the systems. The average SASA values of the selected 

complex were 139.02 nm2, 139.45 nm2, 135.05 nm2, and 136.80 nm2 for α-ketoamide, 

crategolic acid, oleanolic acid, and kaempferol, respectively (Figure 2d). The positive 

control and crategolic acid have almost similar SASA values, and interestingly oleanolic 

acid and kaemferol have lower SASA values than control. The intermolecular hydrogen 

bonds play a vital role in deciphering the proper functions of any small molecules with 

receptors. Thus, we also calculated the hydrogen bonds of our system (Figure 2e). The 

oleanolic acid has more hydrogen bonds than α-ketoamide, while the rest two 

compounds have relatively similar hydrogen bonds. The number of hydrogen bonds 

also in parallel with other calculations, which depicts the compactness of our simulated 

systems.  
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Figure 2. Molecular dynamics simulation studies. (a) Root Mean Square Deviation analysis; (b) Radius of 

gyration analysis, (c) Root Mean Square Fluctuation analysis, (d) Solvent accessible surface area analysis, (e) 

Number of Hydrogen bond analysis.   

 

DISCUSSION 

This research aimed to identify potential SARS-CoV-2 Mpro drug candidates from 

natural sources [37]. Mpro has been investigated as an effective target to restrain the 

expansion of SARS-CoV-2 contamination. We have considered Syzygium aromaticum 

because it contains several bioactive compounds [49, 50]. In addition, it was found to 

have antioxidant activity and a broad range of pharmacological efficiency [51, 52]. 

Besides, Syzygium aromaticum has traditional history to use as common spice around the 

world. Peoples consumes Syzygium aromaticum daily.  

It has been shown that α-ketoamide interacts with the residues of Mpro, namely His41, 

Gly143, Ser144, Cys145, His163, His164, Glu166, Pto168, and Gln189 [53]. Our study 

also found that α-ketoamide interacts with almost similar residues that rectify our 

methods for further study (shown in Figure 2b). Besides, the N3 (native ligand) of the 

chosen main protease (6LU7) interacts with His41 and Cys145 residues [11], which 

implies that His41 and Cys145 residues are crucial for SARS-CoV-2 Mpro inhibition. 

Moreover, recent studies showed that the phytochemicals form strong interactions with 

Leu27, His41, Met49, Cys145, Met165, Thr190 residues of SARS-CoV-2 Mpro [45, 54, 55]. 

In addition to the main protease, phytochemicals showed antiviral activity against 

SARS-CoV-2 envelope protein [56].  

Among the studied 20 compounds of Syzygium aromaticum, only four compounds were 

used for more investigation considering their binding affinity and compared to the 

known antagonist α-ketoamide. All these compounds form hydrogen or hydrophobic 

interactions with the crucial residues His41-Cys145 of Mpro. In a previous study, 

oleanolic acid was described as an active compound against the hepatitis C virus (HCV) 
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[57]. Likewise, Kaempferol was suggested to be an excellent anti-coronavirus candidate 

[58]. Recently, Jo et al. showed the anti-SARS-CoV-2 activity of kaempferol [59]. Khan et 

al. also showed that kaempferol bonds with the essential active site residue, inhibiting 

SARS-CoV-2 [60]. Moreover, kaempferol was also shown in several other 

pharmacological activities [61]. Besides, the presented compounds (Table 1) showed 

considerable bio-activities in different in-vitro studies. For example, recently, Alhadrami 

et al. depicted that olive-derived phytochemicals inhibit SARS-CoV-2 main protease at 

IC50 = 3.22–14.55 µM [62]. Furthermore, Colunga Biancatelli and colleagues reported the 

possible synergistic benefits of quercetin and vit-C against COVID-19 [63]. In addition, 

a clinical study denoted that quercetin improves the patient’s condition [64].  

Our study found that all of our selected compounds follow Lipinski's rule of five except 

bicornin. The selected three compounds, crategolic acid, oleanolic acids, and 

kaempferol, showed considerable water solubility, whereas bicornin failed to fulfill 

these parameters also. Also, these compounds showed considerable in vitro hERG 

toxicity. However, the only bicornin violates the Lipinski rule of five (shown in Table 1).   

Molecular dynamics simulation is an effective technique to understand the stability and 

dynamics of the protein-ligand complex [65, 66]. The lower RMSD and RMSF values 

indicate the higher stability of the complex [66, 67]. The compounds, crategolic acid, 

oleanolic acid, and kaemferol formed stable complex with SARS-CoV-2 Mpro, though 

crategolic acid showed a sudden surge initially, but overall, it showed stable binding. 

Nukoolkarn et al. (2008) conducted two ns simulations and found that inhibitor 

compound binds with His41 and Cys145 residues of SARS-CoV 3CLpro [68]. Besides, 

several recent molecular simulation studies showed similar results [45, 67, 69]. Similarly, 

our identified compounds crategolic acid, oleanolic acid, and kaemferol also interacted 

with the active side residues His41 and Cys145 and formed stable conformation, which 

depicts their possible effectiveness over time. 

 

Figure 3. A graphical representation of the study. The screened compounds could potentially inhibit the 

activity of SARS-CoV-2. 

 

CONCLUSION 

The highly infectious nature of SARS-CoV-2 has possessed a devastating effect on 

human life all around the world. Therefore, SARS-CoV-2 antagonists are desperately 

needed to reduce the fast transmissibility of the virus. The major goal of this research 

was to find novel inhibitors for the SARS-CoV-2 main protease. This study employed 
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several computational approaches to identify the probable antagonist of SARS-CoV-2 

Mpro from 20 bioactive phytochemicals of Syzygium aromaticum. Considering the outputs 

of ADMET analysis, molecular docking, and molecular dynamics simulation, three 

compounds, crategolic acid, oleanolic acids, and kaempferol, showed satisfactory 

results to inhibit SARS-CoV-2 infection targeting the main protease (Figure 3). The 

identified compounds can be considered as lead molecules to develop drugs against 

COVID-19. However, more studies are required to confirm their activity and efficacy.  
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