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ABSTRACT 

The pandemic of COVID-19 has created a confounding global health crisis with 

more than 25 million cases and 870,000 deaths worldwide. The novel coronavirus, 

SARS-CoV-2, exploits the human ACE2 receptor and potential CD147 to invade a 

plethora of organ systems including cardiovascular, renal, endocrine, nervous, 

and gastrointestinal. The pathophysiological mechanisms of COVID-19 infection 

were found to be associated with the direct viral invasion, dysregulated renin-

angiotensin-aldosterone system (RAAS), hypoxia, hyperinflammation, cytokine 

storm, endotheliopathy, and thrombosis. Emerging evidence suggests that the 

kinin-kallikrein system, iron dysregulation, and complement component C5a 

anaphylatoxin have roles in disease severity. In critical patients, the effects 

manifest as acute respiratory distress syndrome (ARDS), lymphopenia, acute 

kidney injury (AKI), disseminated intravascular coagulation (DIC), hypovolemic 

shock leading to multiorgan dysfunction syndrome (MODS). In this review, we 

provided an update on the pathophysiology of COVID-19 with an emphasis on 

the clinical outcomes in severe patients that will help facilitate a deeper 

understanding of the disease. 

 

 

  

 

 

 

 

 

 

 

 INTRODUCTION 

In the matter of a decade, another human coronavirus of 

zoonotic origin emerged and put the world in an 

unprecedented crisis. Experiences from SARS (severe 

acute respiratory syndrome) in 2002, and MERS (Middle 

East respiratory syndrome) in 2012, led to the prediction 

of the emergence of a new respiratory disease, and 

COVID-19 (coronavirus disease-2019) prevailed as a 

pandemic. The severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) is the causative agent for 

COVID-19, and it is the seventh coronavirus to infect 

humans [1]. The SARS-CoV-2 is a relatively large 

enveloped virus with an RNA genome size of about 

30kb. Similar to SARS-CoV, the SARS-CoV-2 belongs to 

the lineage B of betacoronavirus and shares a 79% of 

genetic sequence similarity with SARS-CoV, and about 

50% with MERS-CoV [2].  

In most cases, COVID-19 causes asymptomatic to mild 

and moderate illness with fever, cough, dyspnea, and 

loss of smell although the disease can be life-threatening 

for critical patients [3]. A recent study has identified six 

categories of COVID-19 patients based on the clinical 

manifestations, of which three types of “severity” 

groups were observed [4]. The severe patients appeared 

to be elderly, overweight, and had pre-existing 

comorbidities like asthma or lung disease [4]. Similar to 

SARS and MERS, the COVID-19 causes viral pneumonia 

and acute respiratory distress syndrome (ARDS). The 

hyper inflammation and cytokine storm were 

previously reported in SARS, and similar immune 
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responses were also observed in COVID-19 [5]. The 

novel coronavirus has claimed over 870,000 lives 

globally with an estimated infection fatality rate of 

0.65% [6]. In contrast, the case fatality due to SARS was 

roughly 10%, whereas, for MERS, it was as high as 35% 

[7]. Studies show that SARS-CoV-2 can cause a plethora 

of clinical symptoms affecting systems such as 

cardiovascular, renal, endocrine, nervous, and 

gastrointestinal [8]. 

The current understanding of the various clinical 

outcomes in COVID-19 is yet in its early stage. 

However, since SARS-CoV-2 utilizes the same human 

ACE2 receptor as SARS-CoV and a high genetic 

similarity is present between two genomes, an 

analogous pattern of immune reaction is expected [9]. 

Exploring the pathogenesis and the associated 

pathophysiology of COVID-19 is fundamental as it 

bears relevance to both in the bench-side research and 

the bedside clinical applications. In this narrative 

review, we aimed to summarize the updated 

understanding and the advances in the molecular 

pathogenesis and the pathophysiology of COVID-19 

with a focus on the clinical outcomes in severe patients, 

and discussed the course of disease progression in light 

of the existing literature. 

 

ENTRY, ATTACHMENT, AND REPLICATION 

SARS-CoV-2 primarily invades the lung cells and causes 

respiratory illness. It follows a typical lifecycle as of 

other human coronaviruses. Once inside the body, the 

virus utilizes its spike protein to attach to the human 

angiotensin-converting enzyme-2 (ACE2) receptor 

found on the cell surface [10]. Previously in SARS, the 

viruses predominantly infected the type-I alveolar (AT1) 

cells, although the majority (83%) of ACE2 is expressed 

in type-II alveolar (AT2) cells – indicating that AT2 cells 

could act as a potential reservoir for the viruses [11]. 

The ACE2 receptor is a type-I transmembrane protein 

with an enzymatically active domain expressed on the 

surface of many tissues such as lungs, arteries, heart, 

kidney, and intestine [9]. The primary function of 

hACE2 is to control vasoconstriction and regulate blood 

pressure by converting angiotensin-II into vasodilator 

angiotensin (1 to 7) [12]. As for SARS-CoV-2, the 

interaction with hACE2 remains to be the primary 

mechanism of entry into cells although there is a report 

of using basigin (CD147), also known as extracellular 

matrix metalloproteinase inducer (EMMPRIN), as a 

novel route of entry into cells [13]. 

The virus enters the cell via receptor-mediated 

endocytosis pathway [10]. The spike (S) protein is of 

central importance as it interacts with the host receptor 

and establishes the gateway for viral entry into the cell. 

The S-glycoprotein is a homotrimer and it has two 

halves, S1 and S2. The S protein is cleaved at the S1/S2 

junction through transmembrane serine protease 

TMPRSS2; S1 binds to the receptor while S2 mediates 

fusion with the cell membrane for entry [14]. Inside the 

endolysosome, PIKfyve, TCP2, and Cathepsin L 

contribute to the viral entry. It was also shown that the 

virus could form syncytium independent of exogenous 

protease facilitating cell-to-cell fusion [10].  

Following entry, the virus directs its genome translation 

by way of host ribosomes to produce polyproteins from 

ORF1a and ORF1b. The viral encoded proteases, 3-

chymotrypsin-like protease (3CLpro) and papain-like 

protease (PLpro), cleave the polyproteins [15]. A 

multiprotein replicase-transcriptase complex (RTC) is 

formed from the non-structural proteins where RdRp 

plays the key role to produce genomic RNAs [16]. After 

generating a massive amount of copies, the viruses 

break free the cell’s borderline by activating different 

cell death programs. The SARS-CoV-2 exerts similar 

characteristics as of SARS-CoV in destroying the cells as 

evidenced by its lethality in cultured human cells [17]. 

Previously, autopsy studies from SARS showed that 

apoptosis was present in many organs, including the 

liver and thyroid gland [18]. In sputum sample, the 

average viral load was recorded as 7.00 × 106 RNA 

copies per ml with up to 2.35 × 109 copies per ml at 

maximum. The viral load was found to be the highest on 

day 4 with a progressive decline, and remained 

undetectable after day 28 [19].  

 

DYSREGULATION OF RAAS AND KININ-
KALLIKREIN SYSTEM 

Experimental studies show that SARS-CoV-2 infection 

effectively downregulates the expression of ACE2 [20]. 

Since ACE2 is a key regulator of the RAAS (renin-

angiotensin-aldosterone system) pathway, the 

downregulation of ACE2 can disrupt the balance 

between ACE/ACE2 and Ang-II/angiotensin-(1–7) [21]. 

An increased concentration of Ang-II was shown to 

aggravate lung injury through vascular permeability 
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and pulmonary edema [22,23]. Of note, the RAAS 

consists of a network of regulatory proteins that operate 

in important processes, for instance, electrolyte balance, 

vascular permeability, and blood pressure regulation 

[21]. The RAAS pathway elevates blood pressure as 

renin initiates the system by converting angiotensinogen 

(produced by the liver) into angiotensin-I, and 

subsequently to angiotensin-II by ACE, acting as a 

positive regulator of the system to stimulate 

vasoconstriction. Conversely, the destruction of alveolar 

cells and downregulation of ACE2 cause overactivation 

of the RAAS system. The upregulation of Ang-II levels 

leads to the loss of the protective effects of angiotensin-

(1–7) and contributes to severe lung injury, and the 

resulting damage releases inflammatory mediators 

leading to pyroptosis [18,24,25]. 

Moreover, the downregulation of ACE2 expression is 

hypothesized to have impacted the kinin-kallikrein 

system. The kallikreins are serine-protease enzymes that 

convert kininogen into kinin plasma protein. The 

activation of the kinin-kallikrein system releases 

bradykinins that bind to its receptor-B2 found on the 

endothelial cells to initiate relaxation of vascular smooth 

muscle and increase in vascular permeability [26]. 

Generally, the ACE and ACE2 work as kininase II 

enzymes to breakdown bradykinin metabolites; 

however, the downregulation of ACE2 impairs the 

balance in the system and increases bradykinin levels. 

Failure to neutralize the kinins can result in pulmonary 

injury, and angioedema [27].  

 

INFLAMMASOME AND INFLAMMATORY 
MEDIATORS 

The SARS-CoV-2 genome contains the viroporin 3a 

which is a potent activator of cytoplasmic nod-like 

receptor family pyrin domain-containing 3  (NLRP3) 

inflammasome as seen in SARS-CoV [28]. A study 

suggests that proinflammatory cytokines are produced 

in response to the formation of NLRP3 inflammasome 

[28]. The inflammasomes are multiprotein complex in 

the cytosol that promote the secretion of IL-1β, IL-18, 

and damage-associated molecular patterns (DAMPs). 

Excessive release of DAMPs due to hyperactivation of 

NLRP3 inflammasome can result in the release of high 

mobility group box 1 (HMGB1), infiltration of 

neutrophils, activation of macrophages, pyroptosis, and 

cytokine production [29]. 

Studies show that a significantly elevated level of pro-

inflammatory cytokines including IL-2, IL-7, IL-10, 

granulocyte-macrophage colony-stimulating factor 

(GM-CSF), interferon gamma-induced protein 10 (IP10), 

monocyte chemoattractant protein 1 (MCP1), 

macrophage inflammatory protein 1-alpha (MIP1α), and 

TNFα was found in patients affected with COVID-19 

[30]. The activated CD4+ T cells, macrophages, dendritic 

cells, and epithelial cells secrete these cytokines and 

chemokines in response to inflammation [31–33]. The 

release of inflammatory mediators brings CD14+ CD16+ 

monocytes into pulmonary circulation where monocytes 

mature into macrophages and subsequently release 

notably IL-1. IL-6, TNFα and HMGB1 [8,34,35]. The 

HMGB1 acts both as a cytokine and a nuclear protein; 

and plays an important role in endothelial activation, 

and systemic inflammation [35]. The inflammation 

recruits natural killer (NK) cells and T cells producing 

GM-CSF, and tumor necrosis factor (TNF) inviting more 

macrophages to the site of infection [30]. 

The elevated levels of cytokines cause vasodilation and 

increase the capillary permeability by relaxing the 

smooth muscle and contracting the endothelial cells. 

This, in turn, allows blood plasma to leak into interstitial 

space, and to alveoli to cause alveolar edema. The 

pyrogenic cytokines travel via the blood to the central 

nervous system and get the hypothalamus to reset its 

thermostat to increase the body temperature. The 

inflammatory mediators, in particular IL-8, bring 

neutrophil to the scene to destroy the viruses by 

releasing reactive oxygen species (ROS) and an arsenal 

of enzymes into the surrounding tissues [36].  

 

COLLATERAL DAMAGE: NEUTROPHILS AND 
HYPERACTIVE T CELLS 

In COVID-19, laboratory tests found leucopenia with 

leukocyte counts of 2.91 × 109 cells/L of which 70.0% 

were neutrophils [30]. Neutrophils are important in viral 

infection as they keep the inflammation in check. Albeit, 

unless a balance is maintained between its beneficial 

and detrimental effects, they harm the host tissue by 

collateral damage [34]. The autopsy results from people 

with COVID-19 showed an extensive accumulation of 

neutrophil in pulmonary capillaries [37]. 

The damage of type-I and type-II pneumocytes impairs 

the gas exchange and surfactant production which 

inevitably leads to the increase of surface tension. The 
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alveoli collapse and fluid containing proteins build up 

inside the alveoli. The cellular debris and consolidated 

proteinaceous fluid stimulate coughing, while the 

decrease in gas exchange results in hypoxia. An 

evaluation of the host immune system in COVID-19 

critical patients found that the extent of hypoxemia was 

closely related to the levels of host immune cells [38]. 

The low partial pressure of oxygen prompts 

chemoreceptors to stimulate the sympathetic nervous 

system (SNS) to increase both heart rate and respiration 

rate; consequently, shortness of breath occurs. 

The progression of the disease is also accounted for the 

reduced lymphocyte counts and the persistently low 

level of type-I interferon (IFN) induction [34].  

Generally, the type-I IFN plays a crucial role in antiviral 

response by preventing viral replication and spread. 

However, it has been shown that beta coronaviruses can 

sequester their viral RNA from pattern recognition 

receptors (PRR) while the nonstructural proteins such as 

nsp3 and nsp1 can block the interferons to bind to its 

IFN receptors [39,40]. It is speculated that the SARS-

CoV-2 infection might not effectively activate IFN-

regulatory factor 3 (IRF3) and IRF7 which could 

contribute to reduced interferon response [39,41].  

The global T cell lymphopenia seen in COVID-19 severe 

patients is yet to be clarified in detail, but tentative 

studies suggest that Fas-mediated activation-induced 

cell death (AICD) is the likely cause of lymphocytopenia 

and impaired immune response [42]. Moreover, the 

hyperactivated CD8 T cells with a high proportion of 

HLA-DR (CD4 3.47%) and CD38 (CD8 39.4%) were 

observed in COVID-19 [43]. In CD4 T cells, there was an 

increased concentration of highly proinflammatory 

CCR6+ Th17. The cytotoxic T lymphocytes (CTL) were 

equipped with high concentrations of cytotoxic 

granules: granzyme A, granzyme B, granzyme K, 

granzyme M and perforin [44]. The CTLs are supposed 

to initiate programmed cell death to prevent the 

survival of the invading virus but hyperreactive CTLs 

could show high cytotoxicity to induce apoptosis in 

healthy cells and lead to the subsequent severity of the 

disease [43]. 

 

THE COMPLEMENT CASCADES 

As the first line of defense, the complement system 

exerts substantial action against various viral attacks 

[45]. However, in the case of SARS-CoV, one 

experimental study indicated that instead of protective 

effects, the complement system could potentially 

increase the chance for lung damage [46]. The C3a and 

C5a can recruit inflammatory cells to the site, and the 

recruitment of large amounts of neutrophil and 

macrophages can exert pro-inflammatory activity [47]. 

One study demonstrated that patients who died of 

ARDS in COVID-19 had an increased amount of CD163+ 

macrophages infiltration in the lungs and the 

macrophages expressed complement component 5a 

receptor 1 (C5aR1). The study also reported that the 

soluble level of C5a anaphylatoxin was linked to 

COVID-19 disease severity [48]. Another study reported 

that patients who suffered from respiratory failure in 

COVID-19 had an excessive amount of C5b-9, C4d, and 

MASP-2 deposition in the microvasculature [49]. 

Besides, the inflammatory chemokines such as CCL4 

(macrophage inflammatory protein-1β), CCL2 

(monocyte chemoattractant protein 1) and CXCL9 

(monokine induced by gamma interferon) might have 

important roles in disease severity in COVID-19 [48]. 

 

IRON DYSREGULATION, GLUTATHIONE, AND 
FERROPTOSIS 

Hyperferritinemia has been observed in COVID-19 

patients and described as a marker of disease severity 

[50–52]. Iron plays an important role in oxygen 

transport from the lungs to the body; and the cells store 

irons as ferritin in its ferric (Fe3+) state. During infection, 

the interleukin-6 stimulates the synthesis of hepcidin 

which is a key regulator-hormone of iron, and hepcidin 

increases the intracellular concentration of ferritin 

[53,54]. The excess amount of intracellular irons interacts 

with molecular oxygen and generates ROS which can 

have damaging effects on the cells [55]. The 

accumulation of abundant accessible intracellular iron 

contributes to ferroptosis which is an iron-dependent 

regulated form of oxidative cell death [56].    

Inside the cell, the glutathione (GHS) acts as an 

antioxidant and provides the primary protection against 

ferroptosis. Depletion of glutathione leads to loss of 

cellular antioxidant ability, and inhibition of enzymes 

dependent on glutathione, such as glutathione 

peroxidases [57]. One study showed that endogenous 

deficiency of glutathione can result in severe clinical 

complications in COVID-19 patients [58]. The 

glutathione deficiency was found to be associated with 

male sex, age over 65 years, chronic disease, cigarette 
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smoking, and low glutathione intake linked to 

insufficient consumption of fresh vegetables [58]. One 

experimental study denoted that GSH deficiency and its 

related elevated oxidative stress could epigenetically 

change the expression of regulating genes of vitamin D 

contributing to a secondary vitamin D deficiency [59]. In 

summary, the disruption of iron homeostasis and the 

resulting ferroptosis can affect multiple organ systems 

including liver, kidney, heart, and lung [60]. 

 

EXTRAPULMONARY SYMPTOMS 

A wide variety of clinical manifestations is observed in 

COVID-19 as the virus infects gastrointestinal, 

neurologic, renal, and myocardial tissues [8]. The 

gastrointestinal complications including anorexia, 

nausea, diarrhea, and abdominal pain could be directly 

attributed to viral invasion as SARS-CoV-2 was found to 

productively infect gut enterocytes [61]. Similarly, the 

manifestations of anosmia, hypogeusia, headache, and 

visual dysfunction suggest a potential retrograde axonal 

transport of the virus into the brain or via nasal mucosa, 

lamina cribrosa and the olfactory nerve [8]. Another 

study speculated the transport of the virus using motor 

proteins dynein and kinesin via afferent nerve endings 

from the lungs [62]. However, one study hypothesized 

that the disrupted sense of smell could ironically be an 

evolutionary mechanism to self-destruct olfactory 

neurons to halt viral tropism into the central nervous 

system [63]. Since the olfactory neurons regenerate 

every 30 - 120 days, the resulting anosmia could act as a 

self-defense mechanism which is supported by studies 

that indicate: anosmia may be a predictor of good 

prognosis for COVID-19 [64,65]. Despite, the evidence 

for viral tropism in neuron cells suggests that circulating 

leukocytes could alternatively transport SARS-CoV-2 

across the blood-brain barrier in a “Trojan horse” 

manner [66]. 

High expression of ACE2 receptors in myocardial tissue 

and subsequent isolation of virus from these tissues 

support the possible mechanism of virus-mediated 

cardiac dysfunction, resulting in myocardial injury, 

arrhythmias, cardiomyopathy, and acute coronary 

syndromes (ACS) [8]. In severe patients, the low partial 

pressure of oxygen and hyper-inflammation led to the 

alteration of liver biomarkers and liver damage [67]. The 

elevated levels of cytokines may lead to apoptosis of 

pancreatic β-cell and a range of abnormalities such as 

worsened hyperglycemia and ketoacidosis. 

Endocrinologic complications were more pronounced in 

patients with pre-existing diabetes and obesity [8]. In 

addition, histopathologic studies suggest that the virus 

could directly infect the renal system damaging the 

kidney tubule cells; and in combination with 

hyperimmune reaction, the acute kidney injury (AKI) 

manifests as it impairs the normal body fluid flow [8]. 

The health records of 5,449 COVID-19 patients 

hospitalized in New York city hospitals revealed that up 

to 36.6% of them developed AKI, in which more than 

30% were at stage 3, and often requiring renal 

replacement therapy (RRT) [68]. 

 

CYTOKINE STORM AND SYSTEMIC INFLAMMATION 

In the cytokine storm, the elevated levels of cytokines 

contribute to vasodilation, systemic inflammation, and 

immune suppression. In the lungs, the widespread 

inflammation appears as acute respiratory distress 

syndrome (ARDS) and in conjunction with cytokines, it 

may cause systemic inflammatory response for some 

patients [69]. Respiratory failure could occur due to 

ARDS which is the likely cause of death in 70% of fatal 

COVID-19 cases [70]. Aging was found to be correlated 

with elevated proinflammatory cytokines which might 

imply why children are less affected in COVID-19 [71]. 

The endothelial activation due to the cytokine-release by 

activated neutrophils and macrophages secrete TNF-α 

and IL-1β. The formation of neutrophil extracellular 

traps (NETs) further damages the endothelium and 

stimulates the release of IL-6, IL-8, nitric oxide (NO), 

ROS, and platelet-activating factor (PAF) [8,34]. The 

subsequent vasodilation, increased permeability and 

decreased perfusion within the systemic circulation 

allow fluids to leak out and accumulate in the tissues. 

Blood volume and total peripheral resistance (TFR) 

decrease – resulting in the fall of blood pressure. With 

severe hypovolemia and low perfusion, hypovolemic 

shock takes place. 

The systemic effects of cytokine storms recruit 

secondary immune mediators such as human cytokine 

synthesis inhibitory factor (CSIF) or IL-10 that 

suppresses cytokine production; and soluble tumor 

necrosis factor receptors (sTNFR) that neutralize 

circulating TNF-α and induce apoptosis. However, in 

COVID-19, all three types of immune responses (type-I, 

II, and III) are triggered and they subdue the buffering 

capacity of the host to maintain immune balance [72]. In 
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response to high viral load, the IFN-α, IFN-γ, and TNF-

α cytokines are overproduced and inflammasome-

induced cytokines (i.e. IL-1β and IL-18) rise significantly 

[72]. One study demonstrated four distinct immune 

signatures where patients with severe outcomes had 

shown a sustained elevated cytokine response of all four 

types, particularly IFN-λ, TGF-α, IL-16, IL-23, IL-33 and 

coagulopathy markers [72].  

 

MULTIPLE ORGAN DYSFUNCTION SYNDROME 

The inflammation of the endothelium marked by the 

presence of activated neutrophils and macrophages, and 

the decreased expression of ACE2 after SARS-CoV-2 

infection initiate pro‐inflammatory and procoagulant 

pathways [73]. The higher expression of tissue factor 

(TF) and plasminogen activator inhibitor 1 (PAI-1) and 

the impairment of tissue factor pathway inhibitor (TFPI) 

allow the formation of fibrin-based blood clots 

throughout the bloodstream, particularly in the 

capillaries [34]. One study provided biochemical 

evidence and showed that endotheliopathy was 

widespread among critically ill patients of COVID-19 

[74].   

The occurrence of thromboinflammation causes 

disseminated intravascular coagulation (DIC) leading to 

fibrin deposition and microvascular thrombosis. Study 

shows that hypoxia-mediated hyperviscosity and the 

upregulation of the HIF-1 (hypoxia-inducible factor 1) 

may contribute prothrombotic state [75]. The deposition 

of microthrombi and vasculitis could manifest as 

cutaneous manifestation. The thrombi could travel 

through the circulatory system and create a blockage in 

the supply of blood and oxygen in a particular organ, 

resulting in tissue ischemia. The occurrence of 

pulmonary embolism and deep venous thrombosis 

(DVT) has been frequently reported in COVID-19 

pneumonia patients [76]. Moreover, emerging evidence 

suggests that thrombosis could take place in intravenous 

catheters, extracorporeal circuits leading to myocardial 

infarction, and ischemic stroke [8]. Serum inflammatory 

markers such as C-reactive protein (CRP), D-dimer, and 

fibrinogen are prognostic of subsequent severity and 

mortality in COVID-19 [8,77,78].  

With cytokine storm mediated systemic inflammation, 

hypoxia, hypotension, and thrombosis, the multi-organ 

damage takes place especially in the form of cardiac, 

hepatic, and renal failure, leading to multi-organ 

dysfunction syndrome (MODS). The physiologic 

derangement associated with MODS can involve two or 

more organ systems failure, eventually, progress to an 

irreversible state and death. Figure 1 shows a schematic 

diagram of COVID-19 pathophysiology leading to multi 

organ failure. 

 

FUTURE PERSPECTIVES 

With the ability to invade multiple organ systems and 

disrupt a wide range of pathways, the COVID-19 has 

presented itself as a complex biological phenomenon 

that remains to be elucidated in detail. Areas of major 

interests include the proper understanding of how the 

downregulation of ACE2 affects the kinin-kallikrein 

system (KKS) and blood pressure; and how the 

development of thrombotic complications in COVID-19 

is associated with the kinin-kallikrein system. 

Since type-I interferons are part of the body’s immune-

combat strategy against viruses, the cause for the 

reduced type-I interferon production in COVID-19 

patients is an open area of research. In addition, the 

evidence for the direct invasion of SARS-CoV-2 in 

different cell types will uncover the degree and extent of 

infection. T cell lymphopenia, iron dysregulation, and 

neural tropism are also among the highlights for further 

research. 

It is notable to mention that multiple organ dysfunction 

syndrome (MODS) is suggested to be different from the 

multisystem inflammatory syndrome in children (MIS-

C) [79]. The MIS-C is likely the result of an autoimmune 

response mediated by antibodies affecting a number of 

organs; and the syndrome may lead to fatality. The 

potential for antibody-dependent enhancement (ADE) 

needs to be investigated since ADE may exert an 

adverse outcome in vaccination. With an in-depth 

understanding of pathogenesis and pathophysiology, it 

will be possible to devise effective strategies to fight the 

COVID-19. 
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CONCLUSIONS 

The COVID-19 pandemic has become a global concern 

as the disease is likely to persist for a long time. The 

wide range of clinical manifestations beyond the 

respiratory system warrants rigorous research to 

develop a comprehensive scenario of COVID-19 disease. 

topics including the mechanism of direct viral injury, 

the potential alternative routes of invasion, the role of 

bradykinins in blood clots, ferroptosis, T cell apoptosis, 

and nerve cell damage in anosmia require special focus 

to answer the points at issue. We believe our updated 

study of COVID-19 pathophysiology will contribute to a 

Figure 1. A schematic diagram of COVID-19 pathophysiology. The SARS-CoV-2 binds to the ACE2 receptor and invades multiple organ 

systems. The dysregulation of the renin–angiotensin–aldosterone system (RAAS) and the Kinin-Kallikrein system contributes to increase 

permeability and vasodilation. The release of proinflammatory cytokines by white blood cells contributes to widespread inflammation, 

plasma leakage and fall in blood pressure. The development of ARDS, systemic infection, disseminated intravascular coagulation (DIC) 

and tissue ischemia lead to multiple organ dysfunction syndrome (MODS). 
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holistic understanding of the mechanism of disease 

development, and thus provide a window for better 

strategies in therapeutic interventions and patient care. 
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